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Abstract. The paper deals with the stationary distribution of charged particles moving in a material
medium, having scattering and absorption properties, in which a uniform electric field is present. The
purpose of the work is finding analytical solutions in simplified but physically significant situations and
comparing different approximations based on a spherical-harmonics expansion of the velocity distribution.
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1 Introduction

The calculation of the energy distribution of charged par-
ticles moving in a material medium under the effect of
an external electric field is an important topic in many
fields, such as partially ionized plasmas and semiconduc-
tor physics. As the interaction between charged particles
is generally negligible, such phenomena are well described
by a linear Boltzmann equation. A classic technique of
solution is based upon the expansion of the angular de-
pendence of the distribution function (of the charged par-
ticles) in terms of spherical harmonics (PN method). Al-
though for strong fields many terms of the expansion must
be considered [1–10], for weak electric fields, the P1 ap-
proximation (i.e., by retaining only the first two terms of
the expansion) provides sufficiently accurate results [11–
16]. Notwithstanding the linearity of the equations, in situ-
ations of practical interest the interaction between charged
and neutral particles is so complicated that the P1 equa-
tions can be solved only numerically. In the present paper,
simplified cases are considered in which an analytical solu-
tion to the P1 model can be found. From a practical point
of view, these solutions are important as they provide an-
alytical benchmarks for the numerical codes. Moreover,
analytical solutions may represent the starting point of
new numerical techniques. In fact, similar procedures are
employed in the field of neutron transport, when the prob-
lem of the slowing down of fission neutrons is considered.

Although the Boltzmann equation for charged parti-
cles is basically different from the one for neutrons, due
to the presence of an additional term accounting for the
electric field, the two equations present important simi-
larities [17]. In the present paper, the classic problem of
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determining the energy spectrum of neutral particles in a
non-absorbing medium [18] is generalized to include the
effect of the electric field. The analytical solution is found
by using the P1 expansion of the angular dependence of
the particle density. Within this technique, different ap-
proximations are possible, ranging from the simple Fermi
approximation to the rigorous calculation of the moments
of the collision integral. The analytical solution for each of
them is calculated in the following; results are presented
showing the validity of the approximations employed.

2 The linear Boltzmann equation for charged
particles

The velocity distribution of particles of massm and charge
e in an infinite, homogeneous medium with a constant,
uniform electric field E is governed by the Boltzmann
equation [19]

eE

m
·
∂f

∂v
+Nσ(v)vf = Q[f ] +

S(v)

4π
, (1)

being σ(v) the total cross-section (including scattering and
absorption) and N the atomic density, while Q[f ] and
S(v) represent the scattering and external sources, respec-
tively. The scattering source can be written as

Q[f ] =

∫
Nσs(v

′ → v)v′f(v′)dv′ , (2)

being σs(v
′ → v) the differential scattering cross-section.

In the following, all quantities will be expressed as func-
tions of the particle kinetic energy, ε, and direction, Ω.
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Moreover, the equations will be written in terms of the
angular flux, ϕ(ε,Ω), defined as

ϕ(ε,Ω) =
2ε

m2
f(v) , (3)

in such a way that the following relationship

vf(v)dv = ϕ(ε,Ω)dε dΩ (4)

holds. Similarly, a new cross-section, σs(ε
′ → ε,Ω′ · Ω),

and new normalized sources in the (ε,Ω) domain, Sε(ε)
and Qε[ϕ], are introduced, such that

σs(v
′ → v)dv = σs(ε

′ → ε,Ω′ ·Ω)dε dΩ ,

S(v)dv = NSε(ε)dε dΩ ,

Q[f ]dv = NQε[ϕ]dε dΩ . (5)

Consequently, equation (1) can be rewritten as

1
2veÊ ·

∂

∂v

(ϕ
ε

)
+ σ(ε)ϕ(ε,Ω) = Qε[ϕ] +

Sε(ε)

4π
, (6)

being Ê = E/N the reduced electric field. The scattering
source, Qε[ϕ], can be expressed in terms of the scattering
cross-section and of the angular flux, as

Qε[ϕ] =

∫
dε′

∮
dΩ′σs(ε

′ → ε,Ω′ ·Ω)ϕ(ε′,Ω′) . (7)

In the following, the external source will be considered in
the form

Sε(ε) = δ(ε− ε0) . (8)

Therefore, the corresponding solution for ϕ is the Green
function representing the particle flux generated by a
source that injects particles all having energy ε0. From
this solution, the flux generated by a source of arbitrary
spectrum can be readily evaluated.

3 The P1 approximation

An approximate solution to equations (6, 7) can be calcu-
lated by means of the P1 method [20]. According to this
technique, the angular dependence of the flux ϕ(ε,Ω) is
approximated as

ϕ(ε,Ω) =
Φ(ε) + 3Ω · J(ε)

4π
, (9)

being Φ(ε) and J(ε) the total flux and the current, respec-
tively, of the particles having energy ε. To justify such ap-
proximation, it can be observed that, if the electric field
were absent, the angular flux would be isotropic and ex-
actly equal to Φ(ε)/(4π). If the electric field is weak (a
quantitative condition for that is discussed later), a per-
turbative solution of the Boltzmann equation shows that

a linear term in Ω must be added to the angular flux and
the expression (9) is obtained; it represents the simplest
expression for ϕ(ε,Ω) when the dependence on Ω is to
be taken into account. By inserting equation (9) into the
transport equation (6) and integrating overΩ, one obtains

eÊ ·
dJ

dε
+ σΦ =

∫
σs(ε

′)Φ(ε′)P (ε′ → ε)dε′ + δ(ε− ε0),

(10)

being σs(ε
′) =

∫
dε
∮
dΩσs(ε

′ → ε,Ω′ ·Ω) the total scat-
tering cross-section at energy ε′ and having introduced the
function P (ε′ → ε), defined as

P (ε′ → ε) =
1

σs(ε′)

∮
σs(ε

′ → ε,Ω′ ·Ω)dΩ , (11)

which represents the probability for the particle energy to
change from ε′ to ε as a consequence of a single scattering.
To obtain equation (10), use has been made of the formula

∂

∂v
(A(v)+B(v) ·Ω) =

dA

dv
Ω+ 1

v
B+ΩΩ · v

d

dv

(
1
v
B
)
.

(12)

Equation (10) is sufficient to determine the particle energy

distribution only if Ê = 0. If electric field is present, a
second equation, relating Φ and J, is necessary. To this
purpose, the transport equation (6) is integrated over Ω
after multiplying it by Ω itself. One obtains

1
3eÊε

d

dε

(
Φ

ε

)
+σJ=

∫
σs(ε

′)J(ε′)µ0(ε
′→ε)P (ε′ → ε)dε′ ,

(13)

being µ0(ε
′ → ε) the cosine of the deflection angle for the

transition ε′ → ε, defined as

µ0(ε
′→ε)=

1

σs(ε′)P (ε′→ε)

∮
Ω′ ·Ωσs(ε

′→ε,Ω′ ·Ω)dΩ .

(14)

As the electric field and the particle current are paral-

lel (i.e., Ê = ÊJ/J), equation (13) is not a real vector

equation, as it simply connects Ê and J .
In the following, the scattering process between a

charged particle and an atom of massM is assumed to be
elastic and isotropic in the reference frame of the centre
of mass. In this case, the transition probability P (ε′ → ε)
is given by [20]

P (ε′ → ε) =


1

(1− α)ε′
, for αε′ ≤ ε ≤ ε′ ,

0, otherwise ,
(15)

being α = (M−m
M+m )

2, and the cosine of the deflection angle
can be written as

µ0(ε
′ → ε) =

1

1−
√
α

(√
ε

ε′
−

√
αε′

ε

)
. (16)



G.G.M. Coppa and A. D’Angola: Analytical solutions for the energy distribution 535

Moreover, as the purpose of the present work is to ob-
tain analytical reference solutions for the charged-particle
energy distribution, a simplified dependence of the cross-
sections on energy is assumed, by considering a 1/ε be-
haviour of σs and σ:

σs(ε) =
Υs

ε
, σ(ε) =

Υ

ε
. (17)

It turns out useful to rewrite equations (10) and (13)
in terms of the lethargy variable u = log(ε0/ε) and
of the quantities F(u) = ε(u)σs(ε(u))Φ(ε(u)), J(u) =
−ε(u)σs(ε(u))J(ε(u)), which represent the first moments
of the scattering density σs(ε)ϕ(ε,Ω); the following sys-
tem of equations is obtained:

eÊ

Υs

dJ

du
+

Υ

Υs
F(u)=

∫ u
u−∆u

exp(u′ − u)

1− α
F(u′)du′+δ(u) ,

eÊ

3Υs

(
F+

dF

du

)
+
Υ

Υs
J(u)=

∫ u
u−∆u

1

(1− α)(1−
√
α)

×
{
exp

(
3
2 (u

′ − u)
)
−
√
α exp

(
1
2 (u

′ − u)
)}
J(u′)du′,

(18)

where ∆u = − logα represents the maximum increase of
lethargy due to a single scattering event.

4 Approximate solution to the P1 model

The quantity F(u) represents the scattering density per
unit of lethargy; more precisely, F(u)du is the mean num-
ber of scattering events, per unit of time, occurring to
each atom of the material medium due to charged parti-

cles having lethargy in (u, u + du). If Ê = 0, the density
F(u) can be determined from the first equation (18); its
solution, known as Placzek function [18], can be calculated
analytically. If the electric field is non-vanishing, also the
second equation (18) must be taken into account; in fact,
its solution provides the necessary relationship between
the “current” J and the scattering density F. However, if
the electric field is weak enough, an approximate solution
to this equation can be used. The simplest approximation
is obtained by assuming J(u′) � J(u) in the integral ap-
pearing in the r.h.s. of the second equation (18); in such
a way, the integral is approximated simply as 〈µ0〉J(u),
where〈µ0〉 =

2m
3M represents the mean value of the cosine

of the deflection angle [20], and the equation can be solved
with respect to J, obtaining

J(u) = −
eÊ

3 (Υ − 〈µ0〉Υs)

(
F+

dF

du

)
. (19)

Finally, by inserting equation (19) into the first equa-
tion (18), the following integro-differential equation for F
is obtained:

ζ

(
d2F

du2
+

dF

du

)
−

1

γ
F+

∫ u
u−∆u

exp(u′ − u)

1− α
F(u′)du′

+δ(u) = 0 , (20)

having defined the constant ζ and γ as

ζ =

(
eÊ

)2
3Υs (Υ − 〈µ0〉Υs)

, γ =
Υs

Υ
. (21)

If γ < 1 (i.e., if absorption is present), the appropriate
boundary conditions for equation (20) are

lim
u→±∞

F(u) = 0 . (22)

In fact, by integrating the transport equation (6) over the
(Ω, ε) domain, one can readily verify that the total num-

ber of scattering events,
∫ +∞
−∞ F(u)du, can be evaluated

as γ/(1 − γ). Being F(u) always non-negative, the con-
dition (22) is required. The important case γ = 1 (i.e.,
σs = σ) will be considered as a limit situation when
γ → 1−.

It must be noticed that a qualitative but physically
significant solution of equation (20) can be obtained us-
ing the so-called Fermi approximation [20], which con-
sists in calculating the integral term by assuming F(u′) �
F(u)+ (u′−u)dF/du. Using this procedure, equation (20)
becomes a simple Fokker-Planck differential equation:

ζ
d2F

du2
+ (ζ − 〈∆u〉)

dF

du
−

(
1

γ
− 1

)
F+ δ(u) = 0 , (23)

being 〈∆u〉 = 1+ α
1−α logα the mean increase in lethargy

further to a scattering event [20]. The drift coefficient ap-
pearing in equation (23), 〈∆u〉 − ζ, is given by the differ-
ence between the mean increase in lethargy per scattering
and the quantity ζ, whose meaning is evidently the de-
crease of lethargy caused by the electric field between two
successive collisions. The roots λ1, λ2 of the characteristic
equation associated with equation (23), given by

λ1,2=
1

2ζ

{
〈∆u〉 − ζ ±

[
(〈∆u〉 − ζ)2+ 4ζ

1− γ

γ

] 1
2

}
, (24)

are always real; moreover, they have opposite sign (λ1 > 0,
λ2 < 0) if ζ < 〈∆u〉. When ζ is greater than 〈∆u〉, the
electric field is so strong that the energy gain of a particle
between two successive scattering events is larger than
the loss due to a single scattering. In such situation, the
average energy of each particle increases ceaselessly. As
the P1 approximation requires a weak electric field, the
condition ζ � 〈∆u〉 will be considered always satisfied in
the following. In this case, the solution of equation (23) is

F(u) =
1

ζ (λ1 − λ2)
×

{
exp(λ1u), for u < 0 ,

exp(λ2u), for u > 0 .
(25)

The exact solution of equation (20) can be calculated by
resorting to the Fourier transform technique. Having de-
fined the Fourier transform of a generic function f(u) as

f̃(ω) =
∫ +∞
−∞ f(u) exp(−iωu)du, from equation (20) one

obtains

F̃(ω) =
1

D0(ω)
, (26)
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Fig. 1. Location of the zeroes of D0(ω), for γ = 1, α = 0.75
and ζ = 10−4 (circles). The zeroes stand on a curve (full line),
deduced in the appendix.

being

D0(ω) =
1

γ
− iζω(1 + iω)−

1− α exp(−iω∆u)

(1− α)(1 + iω)
. (27)

The inverse transform,

F(u) =

∫ +∞
−∞

1

2πD0(ω)
exp(iωu)dω , (28)

can be evaluated by using the residue theorem. To this
purpose, the zeroes of D0(ω) must be calculated in com-
plex domain, assuming ω = ωr + iωi. The equation
D0(ω) = 0 has an infinite number of zeroes, Ωk; two of
them, Ω0 and Ω1, are purely imaginary and can be ap-
proximated as iλ2 and iλ1, being λ1, λ2 the roots of the
characteristic equation for the Fermi solution. The remain-
ing zeroes have a non-vanishing real part and a positive
imaginary part greater than λ2. A typical location of the
Ωk’s, for k > 1, is shown in Figure 1 for γ = 1, α = 0.75
and ζ = 10−4. The zeroes in the complex plane stand on
a curve, which can be determined analytically, as shown
in the appendix. Although the Ωk can only be determined
numerically, the following asymptotic formula holds:

Ωk ∼ ±yk +i

(
1+

1

∆u
log

{
1− α

γ
yk
[
1 + ζγy2k

]})
, (29)

being yk =
1
∆u(

π
2 + 2kπ). Details about the deduction of

formula (29) are reported in the appendix.
In order to evaluate F(u), the knowledge of the asymp-

totic behaviour ofD0(ω) for ω →∞ is necessary to choose
the correct integration path in the ω plane. From equa-
tion (27), one can observe that D0(ω) s f(ω) exp(ωi∆u)
for ωi → +∞ (being f(ω) non-diverging for ωi → +∞)
and that D0(ω) s ζω2 for ωi → −∞. Consequently

lim
ωi→+∞

1

D0(ω)
exp(iωu) = 0, for u > −∆u , (30)
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Fig. 2. Scattering density obtained by solving equation (20)
(full line) and by Monte Carlo simulation (circles), for γ = 1,
α = 0.75 and ζ = 10−4.

while

lim
ωi→−∞

1

D0(ω)
exp(iωu) = 0, for u < 0 . (31)

For that reason, the integral in equation (28) can be eval-
uated as

F(u)=


i
∑
k>0

Res
Ωk

(
1

D0(ω)

)
exp(iΩku), for u > −∆u,

−iRes
Ω0

(
1

D0(ω)

)
exp(iΩ0u), for u<0,

(32)

as Ω0 is the only root of D0(ω) having negative imaginary
part. For −ε < u < 0, both expressions in equation (32)
can be used, even though the second is obviously prefer-
able for computational reasons.

Some comments are necessary when γ = 1. In such
case, the purely imaginary zero, Ω1, vanishes, and the in-
tegral appearing in equation (28) is not defined; in fact,
when absorption is absent, the number of particles of the
system increases ceaselessly, and a real stationary solution
to the Boltzmann equation does not exist. In fact, even in
this case a stationary solution does exist for any finite en-
ergy, as particles tend to accumulate in time only at zero
energy. From a mathematical point of view, such a case
can be regarded as a limit situation in which γ = 1 − δ,
with 0 < δ � 1. A typical scattering density F(u) obtained
by means of solution (32) for γ = 1, α = 0.75 and ζ = 10−4

is shown in Figure 2. In the figure, the analytical solution
is compared with a numerical result obtained by resorting
to Monte Carlo method. Due to the sufficiently small value
of ζ, the agreement is excellent. However, if higher values
of ζ are chosen, the approximate solution (32) is expected
to fail and the full P1 system (18) is to be solved.
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Fig. 3. Location of the zeroes of D0(ω) (circles) and D1(ω)
(triangles), for γ = 1, α = 0.75 and ζ = 5× 10−3.

5 Analytical solution of the complete P1
model

The technique based on the Fourier transform, presented
in the previous section, can also be employed to solve the
complete P1 system (18). In fact, noticing that the Fourier
transform of the r.h.s. of the second equation (18) is

1

(1− α)(1−
√
α)

{
1− exp

(
−(32 + iω)∆u

)
3
2 + iω

−
√
α
1− exp

(
−(12 + iω)∆u

)
1
2 + iω

}
J̃(ω) ≡M(ω)J̃(ω), (33)

the transform of the collision density can be expressed as
in equation (26), simply substituting D0(ω) with a new
function, D1(ω), defined as D0(ω), except for 〈µ0〉, which
is replaced by M(ω). Thus, the function D1(ω) can be
written as

D1(ω) =
1

γ
−

1− α exp(−iω∆u)

(1− α)(1 + iω)
− iZ(ω)ω(1 + iω), (34)

which has the same form as equation (27), having replaced
ζ with by the function Z(ω), defined as

Z(ω) = ζ
1− γ 〈µ0〉

1− γM(ω)
. (35)

In the limit ω → 0, Z(ω) coincides with ζ. The inverse
transform, giving the scattering density F(u), can be eval-
uated using again the residue theorem. A solution having
the same form as equation (32) is obtained, the only dif-
ference being the value of the Ωk and of the residues. In
the appendix, an asymptotic formula for the Ωk, similar
to equation (29), is deduced. In Figure 3, the location of
the zeroes of D1(ω) having a non-vanishing real part, for
γ = 1, α = 0.75 and ζ = 5 × 10−3 is shown, together
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Fig. 4. Scattering density obtained by solving equation (20)
(full line), equation (18) (dotted line) and by Monte Carlo
simulation (circles), for γ = 1, α = 0.75 and ζ = 5× 10−3.

with the corresponding zeroes of D0(ω). The correspond-
ing scattering densities are presented in Figure 4; the so-
lution obtained with the Monte Carlo method is reported
also. Having chosen a value of ζ higher than the one used
for the case reported in Figure 2, the complete P1 model
provides a far better solution than the one obtained by the
simplified P1 model. If a higher value of ζ is chosen, also
the complete P1 model begins to fail, as the electric field
cannot be considered weak. In such cases, the P1 approxi-
mation is not sufficient to obtain an accurate solution and
more terms must be included in the spherical harmonics
expansion [1,10].

Appendix: Properties of the zeroes of D0(ω)
and of D1(ω)

By introducing the new complex variable z = 1 + iω =
x+ iy, the equation D0(ω) = 0 can be written as

γ

1− α
(1− exp(−z∆u)) = z − ζγ

(
z3 − z2

)
. (A.1)

As equation (A.1) has only real coefficients, if z is one of its
roots, also its conjugate z∗ is a solution. For that reason,
in the following only the roots with y > 0 are considered.
By separating real and imaginary part of equation (A.1),
a system of equations for x and y is obtained:

γ

1− α
exp(−x∆u) cos(y∆u) =

γ

1− α
− x+ ζγ Re

(
z3 − z2

)
,

γ

1− α
exp(−x∆u) sin(y∆u) =

y − ζγ Im
(
z3 − z2

)
.

(A.2)
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By taking the square of both equations and summing, one
obtains(

γ

1− α

)2
exp(−2x∆u) =

[
p0(x) + p1(x)y

2
]2

+y2
[
p2(x) + ζγy2

]2
, (A.3)

being

p0(x) =
γ

1− α
− x+ ζγ(x3 − x2) ,

p1(x) = ζγ(1− 3x) ,

p2(x) = 1 + ζγ(2x− 3x2) . (A.4)

Equation (A.3) can be regarded as a third-order algebraic
equation for y2, whose coefficients are functions of x. Only
one root of equation (A.3) is real; such solution provides
an explicit relationship connecting x and y, from which
the locus of the zeroes of D0(ω) in the ω plane can be
readily drawn.

From system (A.2), an asymptotic expression for the
solutions of the equationD0(ω) = 0 can be obtained. Con-
sidering that |x| � |y|, the term z3− z2 in both equations
can be approximated as −3xy2 − iy3. If the first of equa-
tions (A.2) is divided by the second, one obtains

cot (y∆u) ∼

γ

1− α
− x

(
1 + 3ζγy2

)
y (1 + ζγy2)

. (A.5)

When y → ∞, the r.h.s. tends to zero. This means that,
asymptotically, y∆u ∼ π

2 + kπ, and, consequently, sin

(y∆u) ∼ (−1)k in the second of equations (A.2). When
positive values of y are considered, the r.h.s. of equa-
tion (A.2) is positive; this requires that k = 2n. In conclu-
sions, the imaginary part of the solutions of equation (A.1)
are given by the following asymptotic expression:

y ∼
1

∆u

(π
2
+ 2nπ

)
. (A.6)

The corresponding real part of the roots can be evaluated
by considering the second equation (A.2), having approx-
imated Im

(
z3 − z2

)
as −y3 and having used the asymp-

totic expression (A.6) for y. One obtains

x ∼ −
1

∆u
log

{
1− α

γ∆u

(π
2
+ 2nπ

)
×

[
1 +

ζγ

∆u2

(π
2
+ 2nπ

)2]}
. (A.7)

In a similar way, the asymptotic behaviour of the zeroes
of D1(ω) can be deduced. In fact, the equation D1(ω) = 0
can be written as

γ

1− α
(1− exp(−z∆u)) = z −

ζ̂γ
(
z3 − z2

)
Ψ(z)

, (A.8)

being ζ̂ = (1− 〈µ0〉) ζ, and having introduced the function
Ψ(z), defined as

Ψ(z) = 1−
γ

(1− α) (1−
√
α)

×

(
1−
√
α exp(−z∆u)

z + 1
2

−

√
α− exp(−z∆u)

z − 12

)
. (A.9)

For large z, Ψ(z) behaves asymptotically as

Ψ(z) ∼ 1−
γ

1− α

exp(−z∆u)

z
, (A.10)

and equation (A.8) can be approximated by the following
equation:

γ

1− α
=L+ z +

ζ̂γz4

L− z
, L=

γ

1− α
exp(−z∆u), (A.11)

which can be solved with respect to L, obtaining

L2 ∼ z2 − ζ̂γz4 . (A.12)

Assuming again that |x| � |y|, the r.h.s. of equation

(A.12) can be approximated as −y2 − ζ̂γy4. Being

L2 =

(
γ

1− α

)2
exp(−2x∆u− 2iy∆u) , (A.13)

this requires that 2y∆u ∼ kπ. Thus the real part of equa-
tion (A.12) can be written as

(−1)k
(

γ

1− α

)2
exp(−2x∆u) ∼ −y2

(
1 + ζ̂γy2

)
. (A.14)

Equation (A.14) requires k to be odd. In conclusion, the
asymptotic behaviour of the zeroes of D1(ω) are given by

y ∼
1

∆u

(π
2
+ nπ

)
,

x ∼ −
1

∆u
log

{
1− α

γ∆u

(π
2
+ nπ

)

×

[
1 +

ζ̂γ

∆u2

(π
2
+ nπ

)2] 12 }
. (A.15)

In the derivation, the term y2 has been retained together

with ζ̂γy4, in order to provide a good approximation even

when ζ̂γy2 � 1.

References

1. S. Shankar, K.F. Jensen, IEEE Trans. Plasma Sci. 23, 780
(1995).

2. L.C. Pitchford, S.V. O’Neil, J.R. Rumble, Phys. Rev. A
23, 294 (1981).

3. L.C. Pitchford, A.V. Phelps, Phys. Rev. A 25, 540 (1982).



G.G.M. Coppa and A. D’Angola: Analytical solutions for the energy distribution 539

4. S. Yachi, Y. Kitamura, K. Kitamori, H. Tagashira, J. Phys.
D 21, 914 (1988).

5. S. Yachi, H. Dates, K. Kitamori, H. Tagashira, J. Phys. D
24, 573 (1991).

6. M.C. Vecchi, M. Rudan, IEEE Trans. Electron. Dev. 45,
230 (1998).

7. S. Reggiani, M.C. Vecchi, M. Rudan, IEEE Trans. Elec-
tron. Dev. 45, 2010 (1998).

8. M.C. Vecchi J. Mohring, M. Rudan, VLSI Design 6, 239
(1998).

9. A. Greiner, M.C. Vecchi, M. Rudan, Semicond. Sci. Tech-
nol. 13, 1080 (1998).

10. D. Schroeder, D. Ventura, A. Gnudi, G. Baccarani, Elec-
tron. Lett. 28, 995 (1992).

11. W.L. Morgan, B.M. Penetrante, Comput. Phys. Commun.
58, 127 (1990).

12. G. Colonna, C. Gorse, M. Capitelli, R. Winkler, J. Wil-
helm, Chem. Phys. Lett. 213, 5 (1993).

13. R. Brunetti, M.C. Vecchi, M. Rudan, VLSI Design 6, 161
(1998).

14. D. Ventura, A. Gnudi, G. Baccarani, Riv. Nuovo Cimento
18, No. 6 (1995).

15. I. Armenise, M. Capitelli, R. Celiberto, G. Colonna, C.
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